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Abstract

The transient hydrodynamics behavior of the ¯uid ¯ow in parallel-plate channels partially ®lled with porous ma-

terial is investigated numerically. The role of the local macroscopic inertial term in the porous domain momentum

equation is studied. It is found that the e�ect of the local inertial term on the channel hydrodynamics behavior is

insigni®cant when Da < 1� 10ÿ6, over the entire range of 0:1 < lR < 10, 0 < A < 104, and for all porous substrate

thicknesses. Also, it is found that the deviation between the predictions of the transient and the quasi-steady models is

more signi®cant in the porous domain and the deviation decreases as the time proceeds. Ó 2001 Elsevier Science Ltd.

All rights reserved.
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1. Introduction

Fluid ¯ow problems in closed conduits, partly ®lled

with porous media, have received great attention recently.

This attention is motivated by several engineering appli-

cations of this speci®c area. These applications include:

porous journal bearing, nuclear reactor, geothermal sys-

tems, solid matrix heat exchangers, porous ¯at plate

collectors, thermal insulation, storage of nuclear waste

materials, grain storage and drying, and many others [1].

The literature shows that several investigators have

studied the steady-state characteristics of the hydrody-

namics as well as the heat transfer behavior of ¯ows

through closed conduits partly ®lled with porous ma-

terial. The steady hydrodynamics behavior of the ¯uid

¯ow in channels partly ®lled with porous material is ®rst

investigated by Beavers and Joseph [2] who present an

empirically based correlation for the velocity gradient at

the clear ¯uid/porous interface in terms of the velocities

in the ¯uid layer and the porous region. The same

problem is solved analytically using the matched

asymptotic expansion technique by Vafai and Thiyaga-

raja [3] and solved exactly by Vafai and Kim [4]. The

transient hydrodynamic behavior of the ¯uid ¯ow in

channels partly ®lled with porous material is investi-

gated by Al-Nimr and Alkam [5], where the unsteadiness

in the hydrodynamic behavior is due to a step change in

the imposed pressure gradient. The pulsating ¯ow in

channels and tubes totally ®lled with porous material is

investigated analytically by Alkam and Al-Nimr [6]. The

thermal behavior of ¯ow through domains partly ®lled

with porous material is investigated by many researchers

[7±15]. In the present work, the transient hydrodynamics

of a ¯uid ¯ow inside parallel-plate channels partly ®lled

with porous material is investigated numerically. The

unsteadiness in the ¯uid ¯ow is due to sudden change in

the imposed pressure gradient which drives the ¯ow.

The main goal of the present study is to investigate

the role of the macroscopic local inertial term in the

porous domain momentum equation and its e�ect on the

hydrodynamics behavior of channels partly ®lled with

porous material. In the literature about ¯uid ¯ow in

domains totally ®lled with porous material, it has been

realized that the local macroscopic inertial term is

usually small compared to the microscopic Darcy drag

term, and hence can be neglected [16]. In most practical

situations, the velocity responds to an imposed pressure
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change within a second or less. The local inertial term

may be important if an oscillatory pressure gradient is

imposed or if the porous domain is of large void frac-

tion. However, it is obvious that the local inertial term

may retain its importance in applications involving very

thin porous substrates or at large Darcy number. A

quantitative mapping of the operating and geometrical

parameters within which the local inertial term may be

signi®cant is not available in the literature yet. Also, the

e�ect of these geometrical and operating conditions on

the steady-state time, need to be investigated.

In this study, the Darcy±Brinkman±Forchheimer

model is adopted to describe the ¯uid ¯ow hydrody-

namic behavior. The tangential velocities and stresses

are assumed to be matched at the clear ¯uid/porous

domains interface. The inclusion of the Brinkman term

is justi®ed when the porous domain is thin, i.e., � > 0:6
[17]. The continuity of the tangential velocities and shear

stresses at the interface is widely used in the literature. It

is also believed that this approach gives good predictions

especially in thin porous domains when � > 0:6 [1].

2. Mathematical formulation

Consider an unsteady laminar fully developed forced

¯uid ¯ow into a parallel-plate channel partly ®lled with a

porous material. The unsteadiness in the ¯uid ¯ow is due

to a sudden change in the pressure gradient which drives

the ¯ow. The ¯uid is assumed to be Newtonian with

uniform properties and the porous medium is isotropic

and homogeneous. Refering to Fig. 1, and using the

dimensionless parameters given in the nomenclature, the

equations of motion in both clear and porous domains

are given as, respectively,

oU1

os
� 1� o2U1

oY 2
; �1�

ca

oU2

os
� 1� lR

o2U2

oY 2
ÿ 1

Da
U2 ÿ AU 2

2 : �2�

In Eqs. (1) and (2), subscripts 1 and 2 refer to the clear

¯uid and porous substrate, respectively. In Eq. (2), ca is

an acceleration coe�cient tensor that depends on the

geometry of the porous medium [16]. The value of this

coe�cient is far from being settled and it may assumed

to be 1=� or 1 in thin domains having void fractions

close to 1. The other parameters appearing in Eqs. (1)

and (2) are de®ned as

lR �
l2

l1

; Da � K
h2

2

; A � ÿdp
dx

Fh4
2q1

l2
1

����
K
p :

Eqs. (1) and (2) are subject to the following initial and

boundary conditions:

U1�0; Y � � U2�0; Y � � 0 �3�
U1�s; 0� � U2�s; 1� � 0 �4�
U1�s;R� � U2�s;R� �5�
oU1�s;R�

oY
� lR

oU2�s;R�
oY

�6�

Nomenclature

A dimensionless Forchheimer coe�cient

[�ÿdp=dx��F h4
2q1=l

2
1

����
K
p �]

ca acceleration coe�cient tensor

Da Darcy number, K2=h2
2

h1 clear domain width

h2 channel width

K permeability of the porous medium

p pressure

R dimensionless ratio, h1=h2

t time

t0 reference time, q1h2
2=l1

u axial velocity

u0 reference axial velocity [�ÿdp=dx��h2
2=l1�]

U dimensionless axial velocity, u=u0

x axial coordinate

y transverse coordinate

Y dimensionless transverse coordinate, y=h2

Greek symbols

l dynamic viscosity

lR dynamic viscosity ratio, l2=l1

q density

s dimensionless time, t=t0

Subscripts

1 refers to the clear domain

2 refers to the porous domain

Fig. 1. Schematic of the problem showing the physical

parameters.
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3. Results and discussion

The non-dimensional system of coupled partial dif-

ferential equations is solved numerically using the ®nite

di�erence technique on a uniform grid. Second order

accurate central di�erencing, except at the interface, is

used for the spatial coordinate. At the interface, second

order backward and forward di�erencing schemes are

used in regions 1 and 2, respectively. The fully implicit

scheme is used for the time derivative. Although the

implicit scheme is only ®rst order accurate in time, the

use of the second order accurate Crank±Nicolson

scheme imposes severe restrictions on the time step re-

quired for a bounded solution [18]. The problem rises

from the term that included the Darcy number in Eq. (2).

The requirement for a bounded solution necessitates the

use of a time step at least an order of magnitude less

than the lowest Darcy number used, 10ÿ14 in this study.

This will result in extremely long computational time

before reaching steady-state conditions. The fully im-

plicit method is not subject to such a restriction. Thus, a

more practical time step can be used leading to consid-

erable saving in computational time. Newton lineariza-

tion technique is used for the last term in Eq. (2) [19].

The resulting system of linear algebraic equations is tri-

diagonal except at the interface where the equation is in

terms of ®ve unknown node values. This is a direct result

of using second order accurate forward and backward

di�erencing schemes at the interface. The number of

unknowns is reduced to three by addition and subtrac-

tion of the equation with those equations for the nodes

just above and just below the interface. This makes the

whole system tri-diagonal. The system is then solved

using the Thomas tri-diagonal matrix algorithm [18,19].

The solution is advanced in small time steps until the

change in the velocity at all nodes becomes less than a

pre-de®ned steady-state tolerance value. At this point

the solution is deemed to have reached steady-state.

Extensive testing is carried out for the proper values

of the number of nodes, time step, and steady-state

tolerance. This is important to ensure that the results

were independent of such choices. The tests included

varying the value of nodes (m) from 50 to 200, value of

time step �ds� from 10ÿ4 to 10ÿ8, and the value of the

steady-state tolerance �dt� from 10ÿ8 to 10ÿ12. The tests

are performed for several combinations of R, lR, Da,

and A. The combination of parameters used in this study

are m� 100, ds � 10ÿ6; and dt � 10ÿ10.

To verify the validity of the adopted numerical

scheme, the steady-state versions of Eqs. (1)±(6), with

negligible microscopic inertial term (A� 0), are solved

analytically. The analytical solution under these as-

sumptions is given as

U1 � ÿ Y 2

2
� C1Y ; �7�

U2 � Da� C2 sinh kY � C3 cosh kY ; �8�
where

C1 � D1

D
; C2 � D2

D
; C3 � D3

D
;

and

D � R�lRk sinh kR sinh kÿ lRk cosh kR cosh k�
ÿ �cosh kR sinh kÿ sinh kR cosh k�;

D1 � ÿDa�lRk sinh2 kRÿ lRk cosh2 kR�

� 1

2
R2

�
� Da

�
� �lRk sinh kR sinh kÿ lRk cosh kR cosh k�
ÿ R�cosh kR sinh kÿ sinh kR cosh k�;

D2 � R�ÿDalRk sinh kR� R cosh k�

ÿ
�
ÿ Da cosh kR� 1

2
R2

�
� Da

�
cosh k

�
;

D3 � R�ÿR sinh k� DalRk cosh kR�

ÿ
�
ÿ 1

2
R2

�
� Da

�
sinh k� Da sinh kR

�
:

Fig. 2 shows a comparison between the steady-state

numerical and the analytical velocity pro®les for

R � 0:5; lR � 1; Da � 0:01 and A � 0. As clear from

this ®gure, the results are in excellent agreement.

In the following discussion, the model that excludes

the local inertial term from the porous domain mo-

mentum equation will be referred to as the quasi-steady

(Q-S) model while the model that includes the local

inertial term will be referred to as the transient (T)

model.

Fig. 3 presents a mapping for the regions within

which the local inertial term in the porous domain mo-

mentum equation is insigni®cant. From this ®gure, the

local inertial term is insigni®cant when Da < 10ÿ6, over

the entire range of 0:1 < lR < 10 and for all porous

substrate thicknesses (1-R). However, for substrates of

thicknesses larger than 0.1, the local inertial term be-

comes insigni®cant when Da < 10ÿ4 and over the range

of 0:1 < lR < 0:6. For 0:6 < lR < 10, one has to ensure

that Da < 10ÿ6 in order to exclude the local inertial term

in channels having substrates of thicknesses larger than

0.1. When the substrate thickness is larger than 0.25, one

may exclude the local inertial term if Da < 10ÿ4 and over

the range of 0:1 < lR < 5. It is worth mentioning here

that the microscopic inertial term AU 2
2 does not a�ect

the quantitative or the qualitative behavior of the pre-

vious mapping over the entire range included in this

study, 0 < A < 104.

Fig. 4 shows the e�ect of Da, A, R and lR on the

needed time to reach steady-state behavior (sss). This
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Fig. 3. Combinations of R, lR, and Da below which the local inertial term becomes insigni®cant.

Fig. 2. Comparison between the analytical, quasi-steady, and transient steady-state velocity pro®les for the case: R� 0.5, lR � 1:0,

Da� 0.01, and A� 0.0.

Fig. 4. Comparison between the non-dimensional time required to reach steady-state for the transient (T) and quasi-steady (Q-S)

solutions vs Darcy number at di�erent values of A. lR � 1:0 and R � 0:5.
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time measures the duration of the transient behavior and

gives a clear indication about the importance of this

period. If this time is very small, then the unsteadiness in

the hydrodynamic behavior may be ignored regardless

of the deviation between the predictions of the transient

and the quasi-steady models during this short period. It

is clear from this ®gure that for Da < 10ÿ4, the e�ect of

A on sss is insigni®cant and both the transient and the

quasi-steady models give almost identical predictions.

This agrees with our previous conclusions drawn from

the mapping in Fig. 3. Fig. 4 shows that the deviation

between the results of the two models decreases as A

increases because the weight of the local inertial term

with respect to the microscopic inertial term decreases as

A increases. Also, it is clear from Fig. 4 that as A in-

creases the steady-state time sss decreases. As A in-

creases, the retarding forces caused by the solid matrix

increases and the net amplitude of the driving forces,

which is the net e�ect of the pumping pressure gradient

minus the microscopic inertial and viscous forces, de-

creases. This reduction in the driving forces causes a

reduction in the mean velocity in the channel. As a re-

sult, the time required for the ¯uid to be accelerated

from rest to this low mean velocity decreases. This is the

Fig. 5. Comparison between the non-dimensional time required to reach steady-state for the transient (T) and quasi-steady (Q-S)

solution vs Darcy number at di�erent values of R. lR � 1.0 and A� 10.0.

Fig. 6. Comparison between the non-dimensional time required to reach steady-state for the transient (T) and quasi-steady (Q-S)

solution vs Darcy number at di�erent values of lR. R� 0.1 and A� 10.0.
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same reason why as Da decreases, sss decreases. The

coe�cient of the microscopic viscous term plays the

same role as of A.

Fig. 5 shows the e�ect of Da on sss at di�erent R.

For Da < 10ÿ4, the e�ect of Da on sss is insigni®cant

for all substrate thicknesses (1-R). As the porous sub-

strate thickness increases, the steady-state time de-

creases and the deviation between the predictions of the

transient and quasi-steady models decreases. Also, it is

clear that a slight decrease in the thickness of a thin

substrate leads to a signi®cant increase in sss, while a

slight decrease in the thickness of a thick substrate

leads to an insigni®cant increase in sss. In channels

totally ®lled with porous material, the ¯uid responds

almost immediately to the imposed pressure gradient.

However, this is not the case when the porous substrate

is thin. As an example, consider water ¯ow in 0.1 m

width channel, when the porous substrate thickness is

0.09 m (R� 0.1), the ¯uid attains its steady behavior

after about 100 s (sss � 0:01). On the other hand, the

¯uid needs about 8000 s (sss � 0:8) to attain its steady

behavior when the substrate thickness is 0.01 m

(R� 0.9).

Fig. 6 shows the e�ect of Da on sss at di�erent lR. It is

clear that lR has minimal e�ect on sss for Da < 10ÿ2.

Also, as lR increases, the steady-state time decreases

especially at large Da numbers. Increasing lR leads to an

increase in both the microscopic and the macroscopic

Fig. 7. Transient (T) and quasi-steady (Q-S) velocity pro®les at selective non-dimensional times. R� 0.5, lR � 1:0, A� 10.0, and

Da� 0.01.

Fig. 8. Temporal development of the transient (T) and quasi-steady (Q-S) velocities at the center of the clear domain �U1�, at the

interface (R), and at the center of the porous region �U2�. R� 0.5, lR � 1:0, A� 10.0, and Da� 0.01.
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retarding forces which reduces the mean velocity of the

¯uid ¯ow in the channel. As a result, the time required

for the ¯uid to be accelerated from rest to reach this low

velocity decreases.

The transient and quasi-steady velocity pro®les are

shown in Fig. 7 at selective time steps. It is obvious that

the deviation between the predictions of the two models

is more signi®cant in the porous domain. This implies

that neglecting the local inertial term from the porous

domain momentum equation does not alter the real

hydrodynamic behavior of the ¯uid in the clear domain.

Thus, if one is interested in estimating the local shear

stresses at the wall adjacent to the clear domain, the

quasi-steady model gives good predictions in this case.

Also, it is clear that the deviation decreases as time

proceeds and in the limit as s!1, both models give

exactly the same predictions.

Fig. 8 shows the temporal velocity development at

three di�erent locations: the center of the clear region,

the center of the porous region, and at the interface

between the porous and the clear domains. It is clear

from this ®gure that the deviation between the predic-

tions of the two models decreases as the time increases

and the deviation in the porous domain is larger than

that in the clear domain.

4. Conclusion

Numerical solutions are obtained for the transient

¯uid ¯ow problem in channels partially ®lled with

porous material under the e�ect of sudden change in

the imposed pressure gradient. The e�ect of the porous

medium local inertial term is investigated. A mapping

is presented for the regions within which the local in-

ertial term in the porous domain momentum equation

is insigni®cant. It is found that the local inertial term is

insigni®cant when Da < 10ÿ6, over the entire range of

0:1 < lR < 10 and for all porous substrate thicknesses.

However, for substrates of thickness larger than 0.1,

the local inertial term becomes insigni®cant when

Da < 10ÿ4 and over the range of 0:1 < lR < 0:6. For

0:6 < lR < 10, one has to ensure that Da < 10ÿ6 in

order to exclude the local inertial term in channels

having substrates of thickness larger than 0.1. When

the substrate thickness is larger than 0.25, one may

exclude the local inertial term if Da < 10ÿ4 and over

the range of 0:1 < lR < 5. Also, it is found that the

microscopic inertial term does not a�ect the quantita-

tive or the qualitative behavior of the previous map-

ping for 0 < A < 104. The e�ect of di�erent parameters

on the steady-state time is also investigated. It is found

that at small Da numbers, the parameters A, R, lR and

Da have insigni®cant e�ect on the steady-state time.

The deviation between the predictions of the transient

and the quasi-steady models is more signi®cant in the

porous domain.
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